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Abstract

Large Language Models bear the promise of significant acceleration of key Knowledge Graph and Ontology Engineering tasks,
including ontology modeling, extension, modification, population, alignment, as well as entity disambiguation. We lay out LLM-
based Knowledge Graph and Ontology Engineering as a new and coming area of research, and argue that modular approaches to
ontologies will be of central importance.
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1. Introduction

Knowledge Graph and Ontology Engineering (KGOE, in short)
refers to a (vaguely defined) set of tasks that are of central rel-
evance to the life cycle of knowledge graphs, and of ontolo-
gies,1 as data artifacts used in data management and applica-
tions.2 These include, for example, ontology modeling (i.e.,
construction), ontology population (i.e., creating a knowledge
graph with the given ontology as schema), ontology extension
and modification, ontology alignment, entity disambiguation
(sometimes called co-reference resolution).

All of the just mentioned tasks have in common that they are
hard, in the sense that even after more than a quarter century
of Semantic Web research, they still defy attempts to automate
them at reasonable quality levels and scale. The state of the
art on all of these is that they require significant human expert
labor, at times (such as for entity disambiguation) together with
detailed scripting of algorithms that solve the problem at scale
but only for a specific problem instance, i.e., for a very specific
knowledge graph and/or ontology.

At the same time, knowledge graphs and ontologies are ever
more important for applications in data integration and data
management, and more recently also as ground truth to escape
from Large Language Model (LLM) hallucinations [29] and as
components of other neurosymbolic approaches [21, 23, 24].
As a consequence, improved processes and methods for au-
tomating or even semi-automating core KGOE tasks remains
a key challenge for the research community.
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1We mostly understand ontologies as a type of schema for knowledge graphs
in the sense of [45], and as such the ontology can in fact also be understood to
be part of the knowledge graph. We acknowledge other uses, to which our
discussion also applies.

2For background on this and the more general Semantic Web field, see, e.g.,
[20] and the references given therein.

LLMs enter the scene, and the public perception of Artificial
Intelligence (AI), with force in 2022 at the launch of OpenAI’s
ChatGPT,3 with rapid developments since then. Their human-
style conversation capabilities, which include a profound mas-
tery of expression in written language, as well as solid produc-
tion of more structured information, are as stunning as their
sometimes wildly confabulated responses (usually termed hal-
lucinations). Perhaps most important for our discussion herein,
LLMs appear to capture, and to have the ability to recall in dif-
ferent formats and contexts, a wide swath of human knowledge,
both commonsense and specialized, provided it is reflected well
enough in the training data. While at this point in time, their
reliability in terms of accuracy of content in their responses re-
mains problematic, it is quite apparent and widely reported that
working with an LLM can save significant time and effort pro-
vided there is a (human) topic expert available as a check on
factual accuracy.

The promise of LLMs for KGOE is thus: by using LLMs
as approximate natural language knowledge bases that can be
approximately queried, plus LLM capabilities to understand
and produce information in ways structured for KGOE use,
it should be possible to design semi-automatic methods, or
human-LLM interactive methods, that can produce at least draft
solutions for key KGOE problems at a level of quality that will
significantly reduce human expert time and effort. Work on this
line of research has of course already been started by the Se-
mantic Web community. With this paper, we intend to begin
to consolidate the discussion, and – in particular – contribute
observations and discussions related to our own research on
modular ontologies, which we believe to be highly relevant, for
reasons that we will lay out below.

The plan of this paper is as follows. In Section 2 we moti-
vate the need for (a certain type of) modularity for LLM-based

3https://openai.com/index/hello-gpt-4o/
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KGOE. In Section 3 we discuss our notion of modularity and
its research context. In Section 4 we briefly look, in turn, at
the key KGOE tasks identified in the introduction. In Section
5 we will list some concrete research challenges that can drive
LLM-based KGOE forward, and in Section 6 we will conclude.

2. Divide and Conquer

Useful ontologies and knowledge graphs often tend to be large,
or even very large. The ENVO ontology [6] has over 2, 100
classes; the Gene Ontology [7] has over 40, 000 classes; a
Wikipedia-derived class hierarchy used for explainable deep
learning analysis has over 2 · 106 classes [41]; DBpedia Core4

has about 9 · 108 triples with an ontology of about 800 classes,
KnowWhereGraph [48] has over 28 · 109 triples with an ontol-
ogy of about 300 classes. The size – in particular of the ontol-
ogy underlying a knowledge graph – is one of the obstacles fac-
ing humans in KGOE tasks, as even an ontology with a “mere”
300 classes (and corresponding comprehensive OWL axiomati-
zation) is simply too big for a human to keep an overview of as
a whole, or to understand well from scratch within a reasonable
amount of time.

Even before the advent of LLMs, therefore, Semantic Web re-
searchers have looked into the use of ontology modules in order
to segment large ontologies into pieces of a size that are more
workable for the human brain. These efforts include this pa-
per’s authors and their collaborators, in a line of work that has
developed out of Ontology Design Patterns (ODPs [3, 14]) re-
search and practice, using an approach that we believe to be
particularly suited for LLM-based KGOE, and that we will fo-
cus on further below: If an ontology is split into (even possibly
overlapping) pieces that make conceptual sense (as a type of
mini-ontology) for the domain experts, then KGOE tasks can
often focus on one or a few coherent pieces (modules) of the
ontology, thus simplifying the task significantly. And given the
frequent difficulties (and expense) of LLMs to deal with sub-
stantial size prompts and with more open-ended and less com-
mon scenarios, it is a reasonable expectation that similar bene-
fits will apply to LLM-based KGOE.

Let us provide a case in point from the context of ontology
alignment, reported in [1]. The setting is the creation of com-
plex ontology mapping rules between two ontologies in the
OAEI GeoLink complex ontology alignment benchmark [52].
The benchmark is of moderate size, with 40 classes, 149 object
properties and 49 data properties in one of the ontology, and
156 classes, 124 object properties and 46 data properties in the
other ontology. It is a natural rather than synthetic benchmark
in that the ontologies were originally developed for an applica-
tion purpose, and were only cast into a benchmark later. The
benchmark (like all complex ontology alignment benchmarks)
had defied automation for years, the only approaches that were
able to create reasonably good results assumed a shared ABox

4https://www.dbpedia.org/resources/latest-core/

(i.e. a shared data graph) [39, 38], which is of course a very
unrealistic assumption for data management practice.

As reported in [1], an LLM was prompted to produce a body
of an alignment rule, given a rule head together with the two
ontologies as part of the prompt. This essentially completely
failed, i.e., the LLM produced output that was essentially un-
usable. But then we made use of the modular structure of the
body-side ontology, for which 20 named modules (such as “Or-
ganization” or “Physical Sample”) had already been provided
at original deployment of the ontology [27]. We thus prompted
in two stages: given an alignment rule head and the list of 20
module names, we first asked for the module(s) that would be
required to create the rule. Then we prompted for the rule body
by providing the modules previously identified. The results we
obtained were really good in terms of high precision and re-
call. The availability and principled use of modules made the
difference between an almost complete failure and a reasonably
accurate system response.

3. Modules

The term module has been used for different things in the Se-
mantic Web context.5 Our approach, as in [45], comes out
of the tradition of ODPs [3, 14], which are partial ontologies
that address commonly occurring, domain invariant ontology
design issues. Later, related notions with similar underlying
ideas, but generally different objectives (and implementations),
include [35, 50].

For us, and this is laid out in [25, 45], a module is a part of
an ontology that consists of the classes, properties, and ax-
ioms within that ontology that are relevant to a key notion,
as considered by a domain expert, for the ontology use case.
For example, the above mentioned GeoLink ontologies that fo-
cus on oceanographic cruises and data, such key notions (and
corresponding modules) include Trajectory, Cruise, Physical
Sample, Organization. The Enslaved.org ontology about his-
toric person and events data on the transatlantic slave trade [47]
has modules such as Event, Place, Provenance, PersonRecord,
AgeRecord, etc. Modules can overlap or even be nested, and
there are, on purpose, no precise rules which ontology pieces
should be thought of as being part of a specific module. Rather,
it has to make sense from several perspectives, including the
domain experts’ perspectives, the use case perspectives, and the
perspectives of the available data relevant for the use case and
ontology. As such, the modules provide conceptual bridges be-
tween human expert conceptualization and data reality [25].

Our approach called MOMo for Modular Ontology Model-
ing, also includes a step-by-step ontology design methodology
geared towards humans, a module (and pattern) description lan-
guage OPLa expressed in OWL [22], ontology design pattern
libraries [46], and a Protégé plug-in for ontology development
[43, 44] – we mention these just in passing, and details can be

5See, e.g., the proceedings of the WoMO – Workshops on Modular Ontolo-
gies, details at https://iaoa.org/womo/history.html.
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found in [45]; for this paper, the modular structure of the result-
ing ontologies themselves plus the fact that modules in OPLa
annotated modular ontologies be easily be identified program-
matically, are really the most important.

Knowledge graphs whose schema is given as a MOMo modular
ontology then naturally inherit the modular structure from the
ontology: The corresponding graph (ABox) module consists of
all those ABox statements that are fully within a given ontology
module.

MOMo was designed before the advent of LLMs, geared pri-
marily towards human ontology engineers. However it has
also always been on our minds that it should also be helpful
for working towards (semi-)automation of hard KGOE tasks.
LLMs may now provide the opportunity for the Semantic Web
community to close the remaining gaps.

4. Modular LLM-based KGOE

We will now look, in turn, at the key KGOE tasks identified in
the introduction and discuss each of them from the perspective
of modularity-driven LLM-based KGOE. Specifically, we ad-
dress the different tasks in essentially in order of abstraction,
i.e., from knowledge to data. We note of course that inroads
made in any tasks easily have the capacity to impact and im-
prove outcomes in the others.

4.1. Ontology Modeling, Extension and Modification

Automated ontology design – often referred to as Ontology
Learning – has been investigated primarily from a traditional
(i.e., pre-LLM) Natural Language Processing (NLP) perspec-
tive, as a possible way to address the knowledge acquisition
bottleneck with much of the methods established in the early
aughts; see, e.g., [30, 31, 10, 12, 5, 11]. However, as the prolif-
eration of early ODP-based methodologies (e.g., eXtreme De-
sign [40]) grew, newer attempts to accomplish ontology learn-
ing emerged, leveraging identification of candidate patterns and
subsequent human intervention [4].

In remaining pre-LLM years, ontology learning incremen-
tally advanced from these early achievements and established
techniques, generally through incremental evolution, inductive
logic programming and both linguistic- and statistical-focused
NLP [2, 51].6 However, results to date have been rather mixed,
with resulting ontologies far from being able to compare with
carefully crafted ontologies by domain and ontology engineer-
ing experts. The promise of LLMs now in this context comes
from the fact that they are very powerful NLP tools that approx-
imately capture a wide swath of human (expert) knowledge and
can be coaxed by good prompting to even provide this knowl-
edge in a structured form, such as expressed in a formal lan-
guage over a given vocabulary.

6Indeed, the capacity of modern hardware allowed some techniques to
newly shine.

Indeed, some attempts have already been made for LLMs, with
some middling success [42, 15]. At this stage, LLMs are too
limited in commonsense and reasoning power to in a fully au-
tomated fashion. Yet, we can thus expect that LLMs should
enable a human ontology engineers and domain experts to first
draft and then finalize suitable ontologies much more quickly
than before.

It appears to us that specific aspects of the MOMo methodol-
ogy, and generally the modularity idea, should further an LLM-
based approach even more:

1. MOMo is based on a principled use of (high-quality) on-
tology design patterns (ODPs). Developing ODPs is ar-
guably easier than developing full-fledged ontologies, i.e.
in a first step LLMs can be used to develop ODP libraries,
which then in turn can be made use of in LLM-based on-
tology design. As a first step, we have used an LLM to
generate hundreds of simple “commonsense” patterns for
common concepts [13]. These micropatterns – so called
due to their shallow semantics and, even for ODPs, simple
structure – have been organized into a design library [46],
which allows for programmatic access, such as through a
RAG [29] system. Due to their simplicity, they are easily
instantiated into modules [17] and connected together in a
modular fashion.

2. MOMo provides a step-by-step ontology design process
that breaks down the complex ontology modeling task into
clearly delineated pieces, each of which should be easier
to automate than going one-shot from base data (or texts)
to an ontology.

The situation for extension and modification of a MOMo on-
tology is rather similar – in the MOMo approach an ontology
is designed module-by-module (with possible modification of
earlier developed modules while progressing), i.e. extension
and modification are already part of the modeling process.

4.2. Ontology Alignment
Our experience with LLM-based modular ontology alignment
was already conveyed above, in Section 2. Ontology Align-
ment is a core task for ontology-based data integration with a
long-standing corresponding research community, benchmarks
and annual performance competitions.7 The community has
mostly focused on full automation (as opposed to human-in-
the-loop semi-automation) and on so-called simple alignment
tasks, i.e. the creation of one-to-one class mappings (and, with
much less emphasis, one-to-one property mappings). The need
for complex ontology alignment – i.e., the creation of mapping
rules that go beyond one-to-one mapping – has long been rec-
ognized, but it has only come into more focus in the community
about 10 years ago, with very limited results (as pointed out in
Section 2, see also [39, 38]. Regretfully (we think), since the
advent of LLMs focus has mostly shifted back to simple align-
ments, just now with the support of LLMs. Indeed, LLM-based

7See https://om.ontologymatching.org/ for pointers.
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simple ontology alignment has already been investigated with
good results [33, 19].

We would be negligent to not point out that we also observe
issues with some of the established current benchmarks and
methods. For example, in [9] a simple alignment benchmark
was re-evaluated, finding that even humans disagree on a sig-
nificant part of the benchmark, essentially demonstrating that
the benchmark ontologies simply do not carry enough informa-
tion such that even humans can solve it perfectly. In [8], it was
demonstrated that most of the functionality of simple alignment
systems can be obtained by using only string similarity met-
rics. At the same time, when submitting papers for publication
that described complex alignment benchmarks that came out
of real data integration work [53, 54], some reviewers dismis-
sively pointed out that they would not be good as benchmarks
because they would be far beyond anything that could currently
be done.8

For some years, progress on the complex alignment task stalled
[34], even as new benchmarks were released [55]. However,
some new techniques, even incorporating LLMs have shown
some promise. For example, the composition of (geometric)
language embeddings cast from a KG or sourced from an LLM,
can be shown to have correspondences in the latent space [49].
Yet, the performance is still relatively low, ranging from 0.49–
0.69 for Semantic F1-score, depending on the ontologies. As
described above in Section 2, it was demonstrated in [1] that
modularity provides significant performance improvements to
LLM-based complex alignment, in this case with 104 out of 109
(i.e., 95%) target alignment mappings correctly identified on
the GeoLink benchmark when taking modularity into account.

4.3. Ontology Population

In some sense, ontology population and entity co-reference res-
olution/disambiguation are not substantially different. On one
hand there is a theoretical or unknown entity which satisfies, or
otherwise conforms to, a portion of an ontology (i.e., it should
populate the ontology). On the other hand, there is a known
entity described, or otherwise named, in the natural language
corpus. Now the system needs to determine if those two enti-
ties match to move forward in populating the ontology.

In this case, we can leverage two aspects of modularity for on-
tology population with LLMs: conceptual consistency and tight
scope. That is, the conceptual consistency of a module – based
on our definition, of course – means that the constituent classes
and properties of a module somehow belong together, espe-
cially from a human perspective. This in turn provides a tighter
cluster of “sentiment” (for lack of a better term), priming an
LLM in the prompt.

On the other hand, we have seen that LLMs tend to be better
at following patterns, rather than instructions, and it correlates
as well to the length of the prompt [28]. Thus, we posited that

8One of the reasons for creating these benchmarks was precisely to point
out that the state of the art is way behind practical needs.

attempting ontology population on a per-module basis would
succeed where other attempts had poorer results.

Indeed, in a recent set of experiments, we obtained rather ex-
cellent results [32]. Using prompts constructed with a simple
schematic representations of modules and a corresponding ex-
traction example, an LLM was able to achieve 9̃0% extraction
of related triples from text, as compared to ground truth. While
additional experiments are of course required, especially exam-
ining appropriate modeling characteristics for modules, we take
this as an excellent indicator that modularity is of significant
added value to the process.

4.4. Entity Disambiguation

As above, we note that ontology population and entity disam-
biguation are tightly intertwined. While ontology population
focuses on the extraction of an entity and (ostensibly) compar-
ing it to a theoretical candidate, entity disambiguation compares
two known, or otherwise named, entities and must produce a
value corresponding to the degree to which they are the same
entity.

However, we also note that it is difficult to assess the current
capabilities of LLMs to produce correct entity disambiguation
due to the possibility for data leakage (i.e., the appearance of
existing and gold-standard benchmarks in the testing data). For
example, some benchmarks (after prompt-tuning) achieve up-
wards of F1 = 91.

As successful co-reference resolution correlates with available
context, per improved ability to resolve matching context (i.e.,
complex ontology alignment) we see immediate benefit in this
parallel task of entity disambiguation. We thus posit that the
added context from a tight, conceptual description, i.e., a mod-
ule, will significantly improve outcomes for this KGOE task.

5. Concrete Research Challenges

Throughout this paper so far, we have largely discussed a spe-
cific type of module, which we have been calling a conceptual
module and distinct from other uses in the literature for both
ontologies [37, 26] and KGs [18]. We are not aware of any
work on the capabilities of LLMs for integrating for these other
definitions of module. We suspect that due to their (in general)
rigorous approach to the partitioning of knowledge in a logi-
cally consistent way, we may see similar benefits as when using
our notion of modularity. That is to say, by somehow limiting
the scope, we achieve a more human-like approach – and one
more capable of being expressed succinctly in language, and
thus more appropriate for LLM-based assistance in the task.

Of course, it is important to not altogether neglect further re-
search on non-modular, LLM-based KGOE; we need to under-
stand its limitations, as well as its capabilities. Indeed, addi-
tional focus on modular or pattern-based techniques for KGOE
can inform these other lines of research.

From a broader perspective, the added value of modularity that
seems to become apparent for LLM-based KGOE prompts the
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question what other improvements to established ontology and
knowledge graph paradigms would be similarly easy to make
and could also provide major benefits. It is the task of the Se-
mantic Web, Knowledge Graphs, and Ontologies research com-
munities to look into this very question.

6. Conclusion

Knowledge Graphs and Ontologies have seen new resurgence
in the era of LLMs, for example in structuring data for RAG
systems [36] or providing guide-rails to limit or prevent con-
fabulation in textual output [16]. Yet, for all their established
and growing importance, many of the tasks pertaining to their
development, maintenance, extension, and population (to name
a few) are still very difficult. It seems somehow appropriate that
we incorporate LLMs into improving KGOE tasks. LLMs have
shown some initial success in simple tasks, such as the genera-
tion of simple schemas or topic extraction.

To tackle the hard tasks, we have proposed the use of modules –
conceptual, human-centric partitions of an ontology or schema
– that provide internal structure. These conceptual boundaries
assist LLMs in a variety of tasks, seeing already success in on-
tology construction, (complex) alignment, and population. It
seems obvious now that modularity is a missing link for bridg-
ing human conceptualization and machine interoperability. We
thus fully believe that modularity must be incorporated from
the start, both structurally and in documentation, so as to fur-
ther enable the various improvements to KGOE tasks we have
outlined above.
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