Neurosymbolic Ontology and Knowledge Graph Creation

Cogan Shimizu

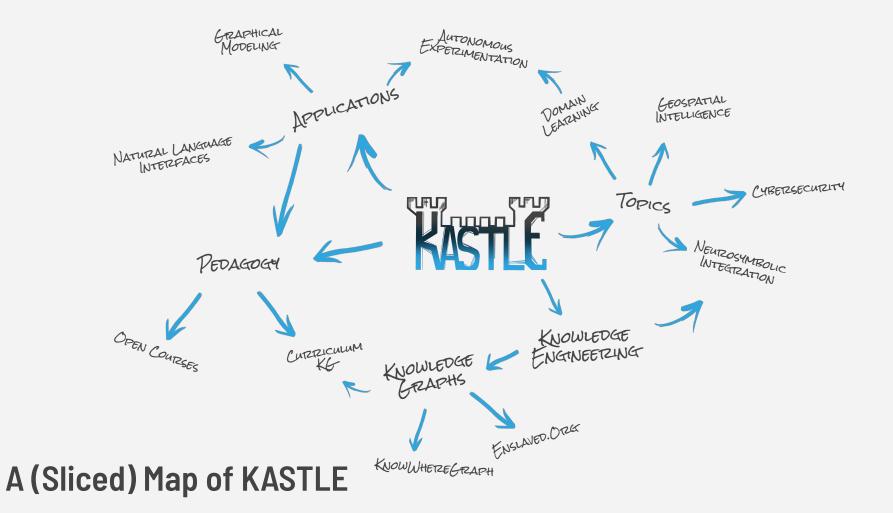
cogan.shimizu@wright.edu coganshimizu.com

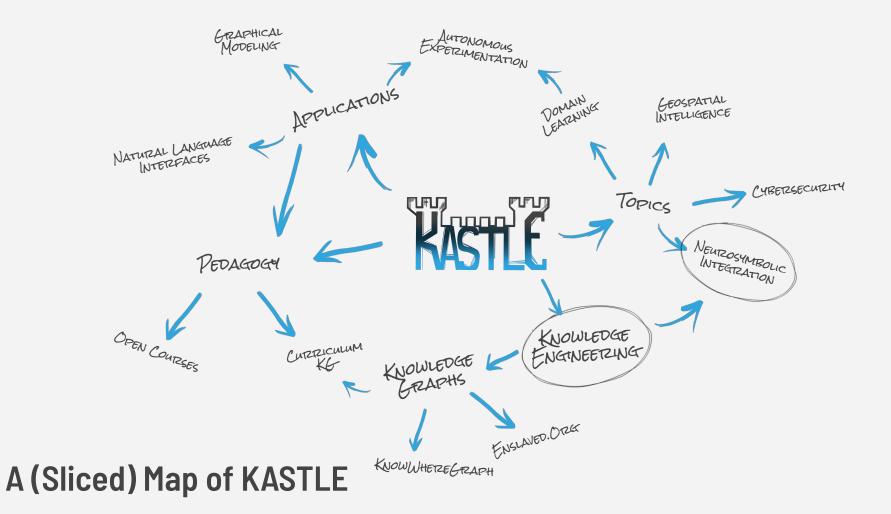
Knowledge and Semantic Technologies Lab Wright State University

Cogan Shimizu

DaSe Lab

Assistant Professor


Department of Computer Science & Engineering Wright State University



C

Outline & Objectives

5

An Overview

Neurosymbolic Ontology & KG Creation (NOK)

NOK's Next Steps

A Conversational Ontologist

Outline & Objectives

6

An Overview

Neurosymbolic Ontology & KG Creation (NOK)

NOK's Next Steps

A Conversational Ontologist

Overview: Knowledge Engineering

Some Examples...

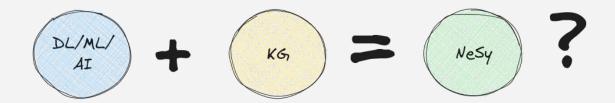
Schema Development

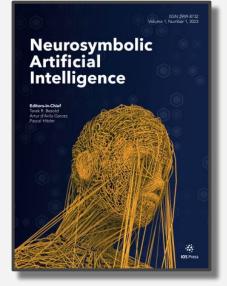
Develop a schema for a KG with a methodology, using available data and subject matter expertise

Schema Learning

Automatically generate a schema for knowledge extracted from unstructured text corpora

Knowledge Alignment

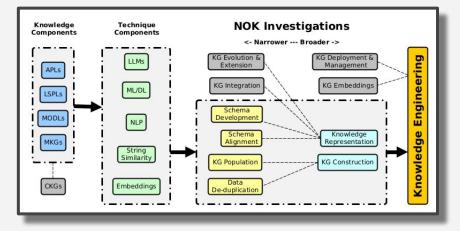

Integrate knowledge fragments modeled in conceptually distinct ways into a singular KG


KG Deployment

Understand the technology stack for efficiently deploying and exposing a knowledge graph

Overview: Neurosymbolic Artificial Intelligence

"Neurosymbolic AI is an emerging field of AI aiming to build rich computational AI models, systems and applications by combining neural and symbolic learning and reasoning."



The Spaghetti Monster

Overview: NOK

Neurosymbolic Ontology & KG Creation

- Based off of a proposal
- Spurred by the hype cycle and an obvious understanding that this should be next!
- Use the power and "speed" of DL systems to create symbolic systems (and other combinations)

Outline & Objectives

An Overview

Neurosymbolic Ontology & KG Creation (NOK)

NOK's Next Steps

A Conversational Ontologist

10

Meme Interlude

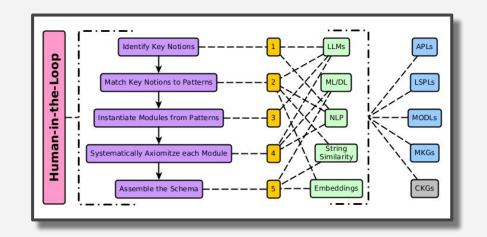
- This is also my face the last few days staring at this presentation...

record scratch

freeze frame

Yup, that's me. You're probably wondering how I ended up in this situation ...

Modular Ontology Modeling


- 1. Define the use case
- 2. Make competency questions
- 3. Identify key notions
- 4. Match patterns to key notions
- 5. Instantiate the patterns
- 6. Systematic axiomatization
- 7. Assemble the modules
- 8. Review final product
- 9. Produce artifacts

- Modular Ontology Modeling (MOMo) is a well-documented, iterative methodology that emphasizes the use of modules as the primary component for creating a knowledge graph schema
- Divide and conquer approach

NOK: Redux

Neurosymbolic Ontology & KG Creation

- Take MOMo and automate it
- Use Libraries of knowledge & patterns
- Integrate with ML/DL techniques

NOK: Knowledge Components

Axiom Patterns

Common axiomatic structure independent of *meaning*

Lexico-syntactic Patterns Common axiomatic structure

Ontology Design Patterns Domain-invariant modeling solutions

1. $A \sqsubseteq B$	7. $A \sqsubseteq R.B$	10 T C <1 D T
2. $A \sqcap B \sqsubseteq \bot$	8. $B \sqsubseteq R^A$	13. $\top \sqsubseteq \leq 1R^-$. \top 14. $\top \sqsubseteq \leq 1R^-$. A 15. $B \sqsubseteq \leq 1R^-$. \top
3. $\exists R.\top \sqsubseteq A$	9. $\top \sqsubseteq \leq 1R. \top$	
4. $\exists R.B \sqsubseteq A$	10. $\top \sqsubseteq \leq 1R.B$	16. $B \subseteq \leq 1R^A$
5. $\top \sqsubseteq \forall R.B$	11. $A \sqsubseteq \leq 1R.\top$	17. $A \sqsubseteq \ge 0R.B$
6. $A \sqsubseteq \forall R.B$	12. $A \sqsubseteq \leq 1R.B$	

NOK: Knowledge Components

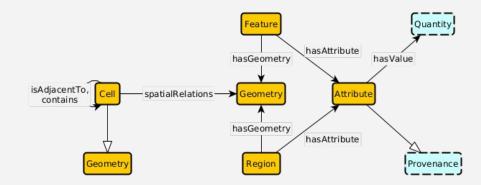
Axiom Patterns

Common axiomatic structure independent of *meaning*

Lexico-syntactic Patterns Common axiomatic structure

Ontology Design Patterns Domain-invariant modeling solutions

NL Formulation
 Engineering project managers participate in writing specifications, researching, and selecting suppliers and materials. Players are involved in competitions.
LSP Formalization
NP <object> participate/take part in/be involved in (NP<event>,)* and] NP<event></event></event></object>
Reusable JAPE code: PA_1.jape

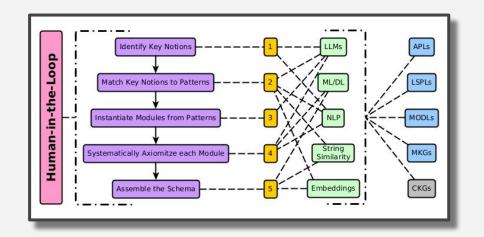

NOK: Knowledge Components

Axiom Patterns

Common axiomatic structure independent of *meaning*

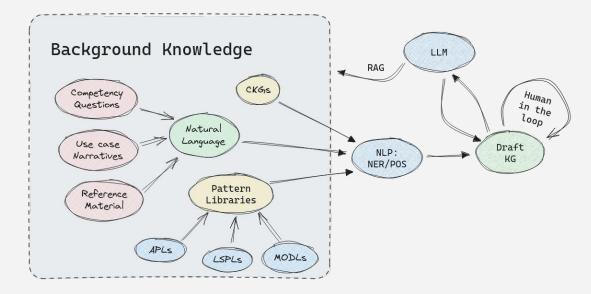
Lexico-syntactic Patterns Common axiomatic structure

Ontology Design Patterns Domain-invariant modeling solutions

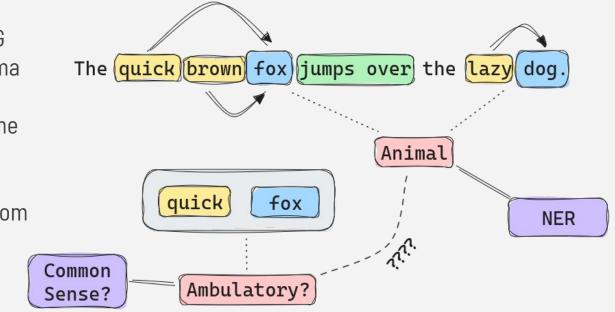

NOK: AI Components

LLMs & ML/DL Topic Modeling, Keyword extraction

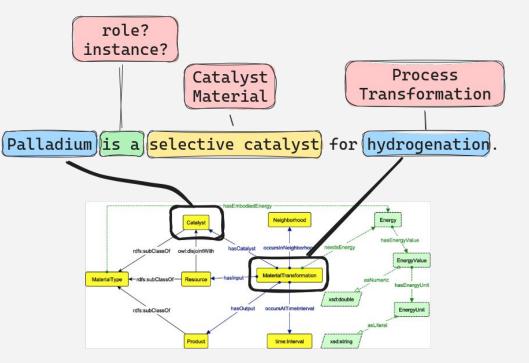
NLP & SS Part of Speech tagging


Embeddings

Co-reference resolution, de-duplication, link prediction


NOK: Implementation Overview

- "The Devil's in the Details" Pascal
- Making the components work in concert
- Lots of pairwise augmentations
 - improving NER with CKG entities
 - Fine tuning LLMs
 - PoS to LSPs


NOK: Implementation Thoughts

- Draft an initial naïve KG
 E.g., one with no schema
- Using word sense, frame semantics, ontolemon (ontolex), NER, NLP to guess at key notions from "instance data"
- Rearrange triples according to patterns

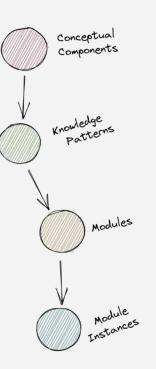
NOK: Implementation Thoughts

- LSPs can be used to match sentences to fragments of ODPs.
- Looking at missing data from a pattern might help extract more from the text.

Outline & Objectives

An Overview

Neurosymbolic Ontology & KG Creation (NOK)


NOK's Next Steps

A Conversational Ontologist

21

NOK: More Patterns

- Need more patterns at different levels of abstraction
- Need more modular ontologies – modules are just (very) specific patterns ;)

Category	Patterns
Metapatterns	Explicit Typing Property Reification Stubs
Organization of Data	Aggregation, Bag, Collection Sequence, List Tree
Space, Time, and Movement	Spatiotemporal Extent Spatial Extent Temporal Extent Trajectory Event
Agents and Roles	AgentRole ParticipantRole Name Stub
Description and Details	Quantities and Units Partonymy/Meronymy Provenance Identifier

ONE DAY WE'LL HAVE MODE 20

NOK: More LSPs and APLs and ...

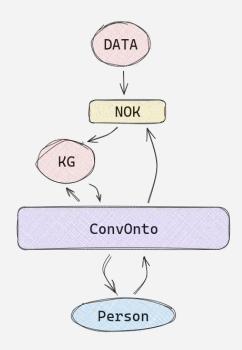
- Current crop of LSPs are very basic.
 - Set of LSPs for each pattern
- **APL**s need more investigation
 - Are there domains with significantly different axiom representation?

- Can we have
 "pre-embeddings" of data structured to a pattern?
- Shapes for every pattern.
- Can we have word embeddings of data which conforms to these patterns?

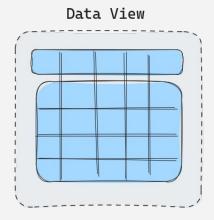
Outline & Objectives

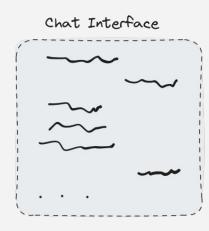
24

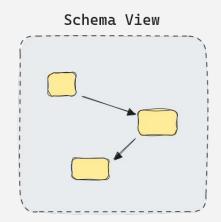
An Overview


Neurosymbolic Ontology & KG Creation (NOK)

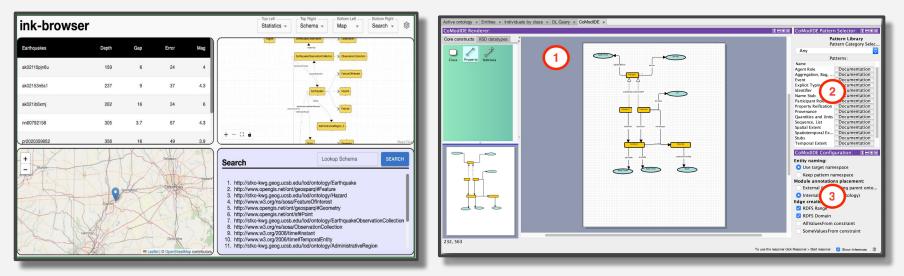
NOK's Next Steps


A Conversational Ontologist


ConvOnto: Overview


- Layering an interactive LLM agent over the NOK process as an additional, dynamic input of natural language to NOK
- Can we replace ourselves?

ConvOnto: Interface

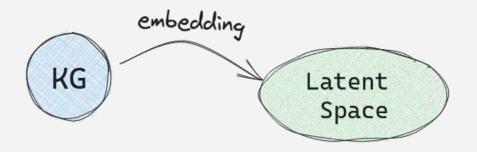


- Shapes (e.g., SHACL)
- R2RML / Foundry

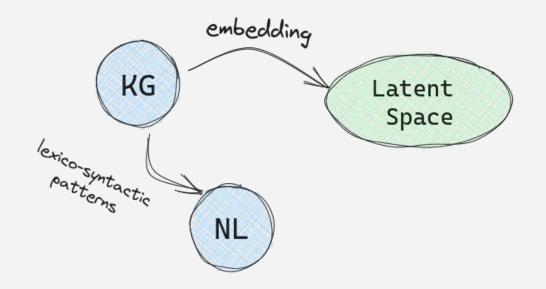
- LLM Agent
- Question Answering
- Ontology Drafting

 Current epistemological view of ConvOnto

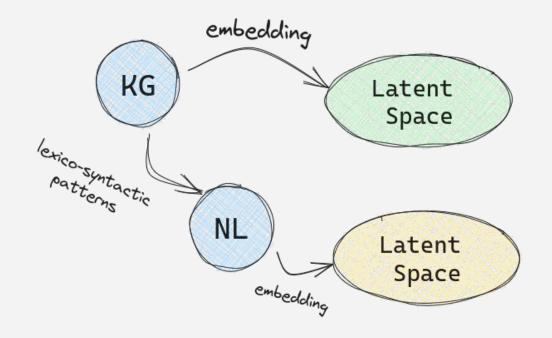
ConvOnto: *Integrations*


 Explore produced instance data & relations with InK Browser? Manually adjust the model with a CoModIDE style interface?

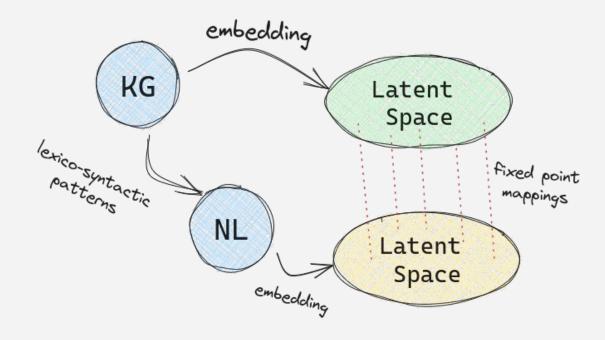
Cogan Shimizu <u>cogan.shimizu@wright.edu</u> coganshimizu.com


Knowledge and Semantic Technologies Laboratory

Structured Knowledge to Latent Space


First, start with a KG and embed it into a latent space.

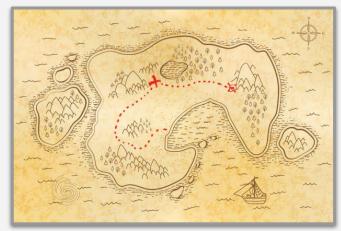
Structured Knowledge to Natural Language


Then, using a library of LSPs, convert the KG into an NL corpus.

Natural Language to Latent Space

Take the NL Corpus and embed that into its own latent space.

Fixed-Point Mapping

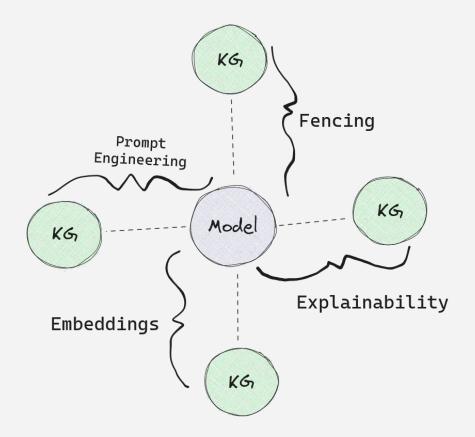


Now, train some model to map between the fixed points in the latent spaces.

Follow-up

So what does this get us?

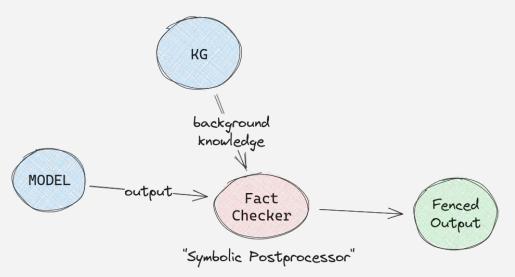
- Extended domain transferability and augmentation
 - Describe an image in Natural Language, do we then have structured knowledge about it?
- An "easy" way to translate natural language back into structured knowledge
 - Leverage metadata and ontology once there?
- What else? (discuss!)



From iStock photos

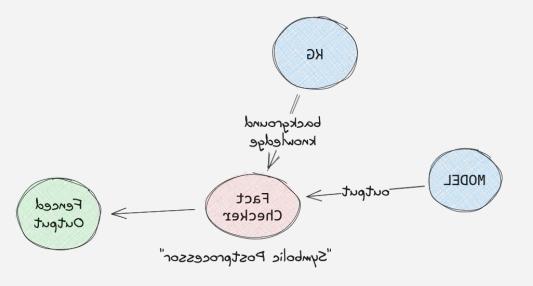
Nesycule 4

What even is this thing?


- Imagining relations between an AI/ML/DL Model in an intuitive "spatial" dimension
- KG "over" a model
- KG "alongside" a model
- Model "over" a KG

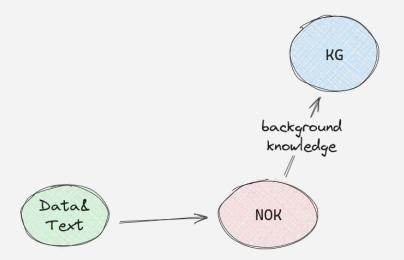
Nesycule 4: Fencing

Symbolic Post-processing


- The process by which output from an LLM (or some model) is fact-checked (common-sense, domain knowledge) for correctness
- Bridging structured knowledge to natural language
 - Lexico-syntactic patterns?
 - Controlled english?
 - Both!?

Nesycule 4: !Fencing

Flip it on its head?


- text

Nesycule 4: NOK

Symbolic Post-processing

- The process by which output from an LLM (or some model) is fact-checked (common-sense, domain knowledge) for correctness
- Bridging structured knowledge to natural language
 - Lexico-syntactic patterns?
 - Controlled english?
 - Both!?

